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The hot-wire method was used to measure the thermal conductivity of both 
T1CI and T1Br. The measurements were performed in the temperature range 
120-300 K and at pressures up to 2.3 GPa. An analysis of the thermal conduc- 
tivity data showed that the Leibfried-Schl6mann formula is a better description 
for TIBr than for T1CI. For both TIBr and T1C1 the effect of optic phonons on 
thermal conductivity cannot be ignored. 
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1. I N T R O D U C T I O N  

The alkal i  hal ides  are of special  impor t ance  in the s tudy of the thermal  
conduc t iv i ty  (2) of crystals  under  pressure,  because  of the relat ively simple 
crystal  s t ructures  involved.  

The  t empe ra tu r e  and  pressure  dependence  of the the rmal  conduc t iv i ty  
of m a n y  alkal i  hal ides  has been inves t iga ted  for bo th  the NaC1 and  the 
CsC1 crystal  s t ructures  [1 ] .  A t t empt s  have also been made  to find 
sys temat ic  t rends  a m o n g  these mate r ia l s  [2 ] .  

Tha l l i um chlor ide  and  tha l l ium b r o m i d e  bo th  crystal l ize in the cubic 
CsC1 structure.  However ,  they possess very different mass  rat ios,  i.e., 5.76 
and  2.56 for T1C1 and  T1Br, respectively.  Both  T1CI and  T1Br are not  
str ict ly ionic and  exhibi t  pa r t i a l  cova lency  due to the presence of  d-elec- 
t rons  in their  ca t ions  [3 ] .  N o  h igh-pressure  the rmal  conduc t iv i ty  da t a  exist 
for T1C1 and  T1Br. The  present  s tudy  was unde r t a ke n  in an a t t empt  to 
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determine the major mechanisms of heat conduction in these materials and 
the influence of the mass ratio on these mechanisms and to test the degree 
to which the results can be correlated with the trends observed in the alkali 
halides. 

2. EXPERIMENTAL 

The transient hot-wire method as described in Refs. 4 and 5 was used 
to measure the thermal conductivity, 2. 

Figure 1 shows the design of the high-pressure capsule used in the 
experiments. The assembled cell was located in the bore of a 30-mm 
pressure vessel and a piston driven by the hydraulic ram of a 3000-kN 
Kennedy press was used to generated the load. The diameter of the sample 
stack was 22 mm and it was located between two concentric cylinders of 
fired pyrophyllite. The temperature was controlled by cooling the massive 
pressure vessel by a controlled flow of liquid nitrogen and was determined 
from the measured change in resistance of the Ni wire. This capsule can 
operate up to 700 K. Because of the high toxicity of T1C1 and T1Br, no data 
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Fig. 1. Schematic diagram of the high-pressure capsule. 
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were obtained at high temperatures during these experiments. The 
resistivity of the particular Ni wire batch used had been determined very 
accurately as a function of temperature during previous experiments. 

The hot wire was sandwiched between two precompacted plates of the 
sample material. The wire used had a diameter of 0.127 mm and was 
installed in a circular loop on the sample surface. Four  leads were spot- 
welded to the wire to allow four-point resistance measurements to be 
performed. Any distortion of the wire under pressure was calculated from 
the measured electrical resistance of the wire, as described by Andersson 
and B/ickstr6m [5].  

In these experiments a computer-controlled data acquisition system 
was used to generate and record the thermograms. An HP 9816 desktop 
computer coupled to two high-sensitivity digital voltmeters, a control unit, 
and a disc drive formed the measurement system. 

The nickel hot wire was connected in series with a standard resistor, 
R s, a 45-E2 resistor, and a constant-voltage power supply as shown in 
Fig. 2. The voltages across the Ni wire and the standard R+ were monitored 
simultaneously every 27 ms by two high-sensitivity (5.5-digit) voltmeters. 
At the onset of a measurement, a negligible current of ~ 1 mA flowed in the 
circuit. This enabled the ambient temperature of the sample to be evaluated 
prior to the application of the heating current. After 0.5 s, an electronic 
switch across the 45-(2 resistor was closed, effectively increasing the current 
to 2 A. Data were recorded for 1 s. 
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Fig. 2. Schematic diagram of the data acquisition system. 
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The voltages across the R s and the Ni wire were used to calculate the 
resistance of the Ni wire as a function of time. Using the resistance vs tem- 
perature calibration a temperature-time profile was evaluated. 

The value of the standard resistor was chosen to match that of the Ni 
wire as closely as possible. This ensured that the constant-voltage power 
supply delivered constant power across the Ni wire for the duration of the 
measurement. 

Figure 3 shows a typical plot of temperature versus ln(t). A linear 
regression fit was made to the experimental points and hence the thermal 
conductivity was determined, as described in Ref. 5. The entire 
measurement cycle, including the determination of 2, required 2 rain. 

The material used in the experiments was powder (>99 .5% purity) 
obtained from Merck, West Germany. It was compacted in a steel die to 
0.3 GPa to form potycrystaltine plates 22 mm in diameter and 12 mm thick. 
The capsule was dried in a vacuum oven prior to its being mounted in the 
press. 

For each sample, three isobars were recorded, one at 0.5, one at 1, and 
one at 2 GPa, over the temperature range of 120-300 K. In addition, an 
isotherm from 0 to 2.3 GPa was measured at ambient temperature for each 
material. 

3. RESULTS 

The experimental results of the present work are shown in Figs. 4 to 7. 
Figure 4 shows a plot of thermal conductivity versus pressure for TtCt and 
T1Br. Three thermograms were recorded at each pressure and the scatter in 
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Fig. 3. Nickel wire temperature vsln(t), where time, t, is in 
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Fig. 4. Thermal conductivity of TfCI and T1Br as a function of 
pressure. 

the data was negligible. A regression fit was made to the experimental data 
and the results are shown in Table I. In Fig, 5 the measured thermal 
resistivity W =  1/)~ as a function of temperature is plotted for TIC1 at three 
isobars, Each line comprises many data points recorded with the data 
acquisition system�9 The solid line is a linear-regression fit to the experimen- 
tal data extrapolated to zero pressure. 

Our results at zero pressure may be compared with those of previous 
investigators. Agreement is within 10% in the case of both Giacomini [6]  
and McCarthy and Ballard [7].  
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Fig. 5. Thermal resistivity of TIC1 as a function of temperature. 
( + )  Giacomini [6];  ( x ) McCarthy and BaUard [7].  
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Fig. 6. Thermal resistivity of TIBr as a function of temperature. 
(+)  Giacomini [6]; (x )  McCarthy and BaUard [7]. 

Figure 6 shows thermal resistivity versus temperature data for TtBr. As 
before, three isobars were recorded and the solid line is a linear regression 
fit to the data extrapolated to zero pressure. Agreement with the ambient 
pressure data of McCarthy and Ballard [7]  is within 5 %, while the value 
of Giacomini [6]  is about 20% lower than our experimental value at zero 
pressure. 

The temperature dependence of the thermal conductivity of T1Br and 
T1CI has been measured recently by Suemune [8]  at ambient pressure. He 
reports the occurrence of an anomalous minimum in thermal conductivity 
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Fig, 7. g value (at zero pressure) versus mass ratio for compounds 
in the CsC1 crystal structure. 
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Table I. Thermal Conductivity Versus Pressure at Ambient Temperature Fitted 
to Equations of the Form 2 = A + B P  + CP 2 
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Material A(W.m-I .K -1 B(W.m-I .K-I .GPa -1) C(W.m I.K 1.GPa 2) 

T1C1 0.950 0.183 0.016 
T1Br 0.523 0.194 0. 

near  200 K for both materials.  N o  such min ima  were observed in our  

experiments.  In addit ion,  the absolute  values of thermal  conduct iv i ty  

obta ined  by Suemune  at 300 K were more  than  three times greater  than  

our  measured  values in both  cases. 

Lawless [9 ]  has measured  the thermal  conduct iv i ty  of  T1Br and T1C1 

in the low- tempera tu re  range 1.7-20 K at ambient  pressure. Ex t rapo la t ion  

of his results to the lowest  tempera tures  measured  in our  experiments  yields 

agreement  within 6 % for T1Br and within 12 % for T1C1. 

Linear  regression fits were made  to the W vs T curves and the results 
are shown in Table  II. 

4. D I S C U S S I O N  

4.1. Absolute Value of  Thermal  Conductivity 

The h igh- tempera ture  thermal  conduct iv i ty  of  insulators  is usually 

described by the Le ib f r i ed -Sch l6mann  formula.  According  to the Leibfried 

Sch l6mann  theory 2 is given by [10]  

)~ = B n  1/3 ~ ) m o 3  7~o2T  -1  (1) 

Table II. Isobaric Temperature Dependence of W Fitted to Equations 
of the Form W = A + B T  

Material Pressure (GPa) A (m .K .W 1) B (m .W 1) 

TIBr 0 0.194 5.16 x 10 -3 
T1Br 0.5 9.77 x 10 -2 4.85 x 10-3 
TIBr 1 3.32 x 10 -2 4.50 x 10-3 
T1Br 2 1.61 x 10 -3 3.72 X 1 0  - 3  

T1C1 0 3.21 x 10 2 3.68 x 10-3 
T1C1 0.5 1.14 • 10 -2 3.25 x 10 -3 
T1C1 1 8.94 x 10 -3 3.26 X 10  - 3  

T1C1 2 4.299 x 10 a 2.91 x 10 -3 
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where AI is the average atomic weight, 63 is the average volume per atom, 
n is the number of atoms per primitive unit cell, and 0~ and 7~ are the 
Debye temperature and Grfineisen parameter, respectively. The value of the 
constant B is assume to be 3.04x 1 0 4 W . m  2 . K  3 [10]. This expression 
is valid if one may assume that only acoustic phonons contribute to the 
thermal conductivity via three phonon processes. 

If only acoustic phonons contribute to the thermal properties, then 0~ 
and 700 become 0~ and ~ where the parameters are evaluated over the 
acoustic phonon spectrum. If optic phonons also make a contribution to 2, 
then the values of the Debye temperature and Grfineisen parameter should 
be those calculated over the whole spectrum, i.e., 0o0 and 7o~. 

The values of 0~ and 0~ were calculated by integrating over the 
phonon density of states of T1CI and T1Br, as determined from neutron 
scattering experiments [11]. The Grtineisen parameter was taken to be 
equal to the room-temperature thermodynamic Griineisen parameter 

3~Bs 
7 ( the rmodynamic ) -  

pcp 
where B~ is the adiabatic bulk modulus, ~ is the linear thermal expansion 
coefficient, p is the density, and Cp is the specific heat at constant pressure, 
as given by Redmond and Yates [12]. 

In Table III, the values of 2 at 293 K, calculated using Eq. (1), are 
shown for the two cases of acoustic photons or all phonons taking part in 
the heat transport. The values of the input parameters used in the 
calculations are included as well as the measured values of 2 for com- 
parison. 

From Table III, it can be seen that the measured value of 2 lies 
between the two calculated values at 293 K. This suggests that in these 
materials the contribution of optic phonons to 2 cannot be ignored. 

4.2. Density Dependence of 

Formal differentiation of 2 with respect to density after Slack [10] 
gives 

Table III. Calculated and Measured Values of the Thermal Conductivity of 
T1C1 and T1Br at Zero Pressure and 293 K 

Material T M ~ 0~ 0o~ ~) ~calc "~calc 2 . . . .  
(K) (g-atom) (10 10) (K) (K) (W.m I.K 1)(W.m I-K L)(W.m-I-K-I) 

TICI 293 119.91 2.63 168 84 2.47 0.318 2.543 0.95 
T1Br 293 142.14 2.73 112 65 2.41 0.190 0.974 0.52 
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This can be written as 

1 
g = 3 7 + 2 q - - ~  (3) 

=(OlnO) =B (81nO'~ 
7 \ 8 1 n p / r  T \  8P J r  

and 

q= \81npJT --BT\ c3P Jr 

where Br is the isothermal bulk modulus. 
The parameter q is the second Griineisen parameter. Table IV shows 

the values of g calculated from Eq. (3) for zero pressure, compared with 
experimental values calculated from Eq. (2). The values of ), used are once 
again the room-temperature thermodynamic Grfineisen parameters. The q 
values are calculated from the third-order elastic constant data by the 
method of Rao [-13]. The adiabatic bulk modulus B~, required for Rao's 
method was calculated from the equation B~=�89 By= 
B~(I + 3eTT) -~ could then be used in Eq. (2) to obtain the experimental 
value of g. Values of the elastic constants and their pressure derivatives for 
both compounds were obtained from Landolt-B6rnstein [14]. The 
agreement with experiment, particularly for T1C1, is very poor. Similar poor 
agreement has been observed in the case of the B2 phase of the potassium 
and rubidium halides by Slack and Ross [2]. Figure 7 shows the zero- 
pressure g values of the CsCl-structure alkali hatides plotted as a function 
of the mass ratio. The g values for the high-pressure phases of the 
potassium and rubidium halides were calculated from the 2 versus P data 
of Andersson [15], extrapolated to zero pressure, and the V/Vo data of 
Vaidya and Kennedy [16]. The cesium halide g values were taken from 

Table IV. Values of g Calculated from 37 + 2 q -  ~, Compared with 
Those Obtained by Experiment 

0 GPa 2 GPa 

Material y q B~ (GPa) gobs gcat~ gob~ genie 

TICI 2.47 3.9 23.6 4.07 14.88 6.0 13,2 
TIBr 2.41 3.2 22.2 7.56 13.30 7.0 11.8 
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Fig. 8. g value versus temperature for T1C1 and T1Br. ( x ) T1C1; ( �9  
T1Br. 

the data of Gerlich and Andersson 1-17]. The graph shows a decreasing 
value of g with increasing mass ratio, in contrast with the NaCl-structure 
alkali halides, where the opposite trend has been observed [2]. 

Figure 8 shows the variation of g value with temperature for the two 
materials. These values were obtained from the experimental data in Figs. 5 
and 6, via Eq. (2). The temperature dependence of Br was obtained from 
Landolt-B6rnstein [14]. The value for T1C1 varies very little, while the 
value for T1Br decreases with increasing temperature. 

Figure 9 shows the pressure variation of g as obtained from the 
experimental results in Fig. 4 and Eq. (2). The value of the bulk modulus 
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and its pressure dependence was obtained from Landolt-B6rnstein [14]. 
The value for T1Br shows a decrease with increasing pressure, while the 
value for T1C1 increases slightly. 

The volume dependence of g can be expressed as 
g=37o(V/Vo)q+2q-�89 where 7o is the Grfineisen parameter  at zero 
pressure and V/Vo is the relative volume at pressure P. We used the values 
of 7 and q as given in Table IV. The values of V/Vo were obtained from 
elastic constant data [14],  with the aid of a first-order Murnaghan 
equation. The pressure dependence of the unit volume of T1C1 was also 
measured in our own laboratory,  using a volumetric technique, described 
in Ref. 18. The data were found to be in agreement with the predictions of 
the Murnaghan equation to within 0.5 %. Table IV shows the values of g 
thus calculated for the two materials at 2 GPa.  The experimentally deter- 
mined values are shown for comparison. It is interesting to note that the 
theoretical prediction shows g to decrease with pressure for both com- 
pounds, while experiment shows that this is not the case for T1C1. In view 
of the approximations in the theoretical estimate, it is not possible to assess 
the significance of this discrepancy at present. 

4.3. Isochoric Temperature Dependence of W(= 1/~) 

If Eq, (1) is valid we would expect the thermal resistivity to be propor- 
tional to T. This equation is strictly valid only under isochoric conditions. 
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Fig. 10. Thermal resistivity as a function of temperature for TIC1. 
(+) Isochoric data for volume at P= T= 0. (*) Isobaric data for 
P = 0. The solid lines represent Eq. (1) in the two cases of acoustic 
phonons (A) and acoustic and optic phonons (A & O) taking part 
in the heat transport. 
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Since the value of g as a function of temperature has been determined, we 
may reduce our isobaric data to isochoric conditions. The volume at P = 0 
and T =  0 was chosen. For the reduction we used W(T) at zero pressure 
from Table II, g(T) (Fig. 8), and c~(T) given by Redmond and Yates [12], 
The results are shown in Figs. 10 and ll .  In both cases the isochoric data 
shows a downward curvature at high temperature. It has been predicted by 
Auerbach and Allen [19], based on the observed strong T-dependent 
phonon broadening in these materials, that T1CI and TtBr should exhibit 
saturation effects in 2 at 300 K and above, The observed flattening off in 
the W vs T curves in these materials may therefore be attributable to the 
onset of saturation. 

The fact that the TtBr curve does not extrapolate through the origin is 
contrary to the prediction of the Leibfried-Schl6mann formula, 

Although a straighforward Leibfried-Schl6mann-type analysis does 
not seem to be applicable to these materials, it is significant that the 
experimental values tie between the two solid lines representing the 
theoretical predictions for the thermal resistivity when heat is transported 
by acoustic phonons only or by all phonons. This confirms our earlier 
suggestion that both optic and acoustic phonon contributions need to be 
taken into account for these materials, In fact, the proximity of the 
isochoric curves to the "~acoustic and oNic" straight lines wonld indicate 
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Fig. 1L Thermal resistivity as a function of temperature for TtBr. 
( + ) Isochoric data for volume at P ~-- T =  0. ( x ) Isobaric data for 
P = 0. The solid lines represent Eq. (1 } in the two cases of acoustic 
photons (A) and acoustic and optic phonons (A & O) taking part 
in the heat transport, 
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Table V. Coefficients for Isochoric Thermal Conductivity Fitted to 
Equations of the Form ~ = A + B T  x 

619 

Material A (W. m -i.  K-I ) B (W. m - I  K-(I + ~) x 

TICI 0,297 455.0t -1.1t25 
T1Br 0,271 51.272 -0.795 

that the optic modes play a rather important  role in the heat transport  
process in these materials. 

4.4. Correction for Minimum Conductivity 

Since the Debye temperatures of T1Br and T1C1 are low, correction of 
the data for the effect of minimum thermal conductivity may be expected to 
be significant [-20]. The isochoric data for T1CI and T1Br were fitted 
empirically to equations of the form 2 = A + B T  x, A being the value of the 
minimum thermal conductivity. The results obtained are shown in Table V. 

Since the minimum thermal conductivity is essentially independent of 
pressure, it may be subtracted from the measured value of ,l at zero 
pressure, 2o, and the resulting value, 2 o - 2 ~ ,  may be used to calculate a 
corrected g value which will not contain the nonpropagat ing photon part. 
The results are shown in Table VI. The corrected g values are higher than 
those given in Table IV, thus giving a better agreement with the prediction 
for g as derived from the Leibfried-Schl6mann formula. This is particularly 
pronounced in the case of T1Br. This ought to be expected, as the Debye 
temperature of this material is lower than that of T1C1. 

5. C O N C L U S I O N S  

It  appears that the Leibf r ie~Schl6mann formula cannot  describe the 
thermal conductivity of T1Br and T1C1 very satisfactorily. In both  these 

Table VI. Values of the Minimum Thermal Conductivity, 
2~, and g Values Corrected for the Effect of 2~ 

Material 2~ (W- m-~- K -~) g (corrected) 

TIC1 0.297 6.14 
T1Br 0.271 15.4 
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compounds the optic phonon modes appear to make a significant con- 
tribution to the heat transport. The use of the minimum thermal conduc- 
tivity of these materials leads to better agreement between experiment and 
the Leibfried-Schl6mann theory. More theoretical work is necessary before 
the thermophysical properties of these materials are properly understood. 
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